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Abstract

A study of performance incrcase that could result from
applying advanced aerodynamic concepts to large, longrange
mifitary transport aircraft showed that laminar flow control
(LT'C) offered the largest potential. A more in<depth design study
then investigated the impact of LFC on the performance, weight,
fuel consumption, and economics of a military transport designed
to carry 350,000 1b 10,000 nmi. The design study identifies the
optimum wing planform and cruise speed, the relative perfor-
mance increases from different amounts of LFC, and sensitivitics
to the major LFC uncertainty items;i.e., increased systems weight,
complexity, and maintenance, which can only be quantified by
design, development, and flight test.

Introduction

Recognizing the impact of fuel shortages and sharp fuel price
increases due to the oil embargo, the Air Force Flight Dynamics
Laberatory reinitiated work on application of boundary layer
control to large, long-range military transport aircraft in late 1973.
Separately and concurrently, NASA Langley began studies of the
application of laminar flow control (LFC) to civil passenger trans-
port aircraft that led to the LFC element of the NASA Aircraft
Energy Efficient (ACEE) program. The Air Force solicitation
resulted in two study contracts with the Boeing Commercial
Airplane Company. This paper summarizes results of the initial
study to cvaluate the application of advanced aerodynamic con-
copts to large subsonic transport airplanes,1 and presents the
follow-on preliminary design study that investigated the impact
of the application of LIFC on the performance, weight, fuel con-
sumption, and economics of a large military transport airplane”.
A reference conventional or bascline aircraft was developed during
cach study to provide consistent comparisons with the advanced
aeredynamic technology, LFC aircraft. The technologies consid-
cred are representative of a post-1990 initial operational capability
{10C).

The selected baseline stratcgic airlift mission represents an
environment where fuel and refueling bases are not available
enroute to or on arrival at a Mideast deployment point. These
considerations resulted in a design range of 10,000 nmi. The pay-
load and cargo-box size were determined by the desire to transport
approximate weight multiples of main battle tanks or large mis-
siles, and military outsize cargo requirements. The takeoff field
length was set at 9,000 ft to permit landing at a majority of avail-
able terminals with conventional concrete runways. Additional
constraints werce: ability to carry cargo pallets or containess,
drive-through capability, and a pressurized carge compartment,

Results of the initial comparative evaluation of advanced
acrodynamic concepts for a 250,000-1b payload aircraft! arc
shown in Figure 1 (A, B, C, and D). The baseline configuration
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utilized propulsion, structural, flight controls, and systems tech-
nology improvements projected for a 1985 design start while the
actodynamics technology was typical of Bosing 747 and Lockheed
C-5A designs. Fach aerodynamic concept was evaluated by perfor-
ing only those design changes necessary to efficiently incorporate
the concept into the reference configuration. Improvements in
aerodynamic efficiency ML/D, reductions in takeoff gross weight
(TOGW), and fuel savings for each concept are shown. Each
evaluation included estimates of the system penalties incurred in
incorporating the concept. The uncycled acrodynamic improve-
ment corresponds to the aerodynamic improvement with the
wing, engine, and tail sizes equal to the reference airplane. The
uncycled airplane exceeds mission requirements due to the im-
proved acrodynamics. The cycling or resizing design iteration
produces the final aircraft sized to meet mission reguirements.
LIC individually produced an increase in ML/D of 27%, reduction
in TOGW of 18%, and fuel savings of 29%, nearly double the
improvement found for any of the acrodynamic concepts en-
visioned for the post-1990 I0C time frame. This evaluation of
LFC is perhaps conservative, since the trailing-edge control areas
were not laminarized; therefore, only about 60% of the wing and
tail wetted arca had laminar flow. It should be noted that pesr-
formance benefits of the concepts are very dependent on the
reference configuration, design mission, and assumed system
penalties.

This comparative evaluation provided the impetus for the
follow-on, more in-depth design study, described below, of LFC ap-

plications, and reassessment of the assumed system design penakties.

Turbulent Baseline Design

The baseline turbulent airplanc shown in Figure 2 was
developed from the substantial Boeing data base of large freighter
studies to meet the design mission objectives. The technology level
assumes a start of prototype production in 1985, first flight about
1989, and an 10C after 1990, Selection of a three-bay fuselage was
strongty dictated by the design payload requirements of either three
M-60 tanks or 75 military pallets. Kneeling landing gear permits a
cargo floor loading height of 84 in, The forcbody cab features an
advanced onc-piece windshield compatible with body drag reduc-
tion techniques. The wing planform was selected for efficient long-
range cruise performance, incorporating the benefits of active
controls and advanced composites structural materials. The high-
lift system includes 747 SP-type singleslotted trailing-cdge flaps,
and variable camber leading-edge flaps. The canted *r tail em-
pennage arrangement is a structurally efficient design that provides
drive-through and air-drop capability. The propulsion system
consists of four 1985-technology high bypass ratio cngines,
located on the wing primarily because of airplane balance require-
ment. Spanwise locations were set by flutter considerations and
provide wing bending relief. The design selection chart for the
reference turbulent airplane is shown in Figure 3. The design chart
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Figure 2 Reference Turbulent Airplane
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Figure 3 Engine/Airframe Matching for the Reference Turbulent Airplane

parametrically shows the effect of thrust/weight ratio (T/W) and
wing loading (W/S) on airplane gross weight and block fucl re-
quirements for an otherwise fixed configuration. Performance
factors and constraints, such as takeoff field length (TOFL),
inittal cruise altitude capability (ICAC), and the ratic of the initial
cruise lift coefficient capability to the lift coefficient for maxi-
mum lift/drag ratio (CLR) also are identified. The minimum gross
weight turbulent airplane requires a high wing loading of approxi-
mately 160 1b/ft2 and cannot meet the TOFL requirement. The

minimum fuel burned turbulent airplane requires a lower wing
loading (110 1b/ft2) and does meet the takeoff field requirements
of 9,000 ft. The final design for the turbulent airplane was select-
ed by considering the trade between fuel burned and gross weight
along the TOFL =9,000-ft constraint line (Figure 4}. The selected
design, which has a wing loading of 112.7 lb;’ftz, almost matches
the minimums fuel design, and has a gross weight only 2,3% above
the minimum gross weight for this configuration. This selected
wing loading corresponds to a span loading (W,"bz) of 9.3,
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Figure 4 Reference Turbulent Airplane Design Selection
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LFC Wing Optimization

The LFC airplane shares common fuselage and empennage
design features with the baseline turbulent airplane. The LFC wing
was Iesized for optimum petformance. Three wing structural de-
sign concepts resulting from Boeing in-house and NASA-sponsored
studies that were considered are shown in Figure 5. The integrated-
duct, load-carrying structure, was selected for the military config-
uration of this study. This concept offers the promise of light-
weight, aerodynamically smooth structure with lower technical
risk through design innovation. An integrated-duct, load-carrying
steuctural concept was used on the X-21 flight test airplane.

Wing and tail surfaces are slotted to provide laminarization
to 70% chord, corresponding to the start of the trailing-edge
control surfaces. Potential performance benefits of increasing the
chordwise extent of laminarization are explored in the next
section. Suction is provided by six ram-air turboshaft engine/com-
pressor units, two units lacated on each wing as shown in Figure 6,
and two units located on the empennage. Specific design criteria
applicd to the wing and cinpennage duct systerms are shown in
Figure 6, and resulting duct size and flow rates are contained in
Reference 2,

Four different suction pump drive systems were considered
for application during this study. The suction compressors may be
directly driven by shaft power from the main engines or driven
by a turbine using heated high-pressure air from the main engine
as on the X-21. The suction compressor may alternatively be
driven by a separate turboshaft engine using either a ram air inlet,
or air from the suction system. Selection of the ram air turboshaft
engine/compressor unit was governed by its inherent design
simplicity, location flexibility, ease of control independent of the
main engines, and maximum commonality between the wing and
empennage units, The disadvantages were moderately increased
systems weight, and fucl consumption.

SUCTION SYSTEM CHARACTERISTICS |

® SUCTION APPLIED OVER 0 TO 70% CHORD
ON WING, HORIZONTAL AND VERTICAL SUR.
FACES, AND ACCESS DOORS

® TWO SUCTION ENGINES PER WING AND TWO SUC.
TION ENGINES ON EMPENNAGE

® TWO LEVELS OF SUCTION PROVIDED BY AXIAL
FLOW COMPRESSORS

® DUCT VELGCITY: MACH = 0.2
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Figure 5 Laminar Flow Control Structural Concept
Considerations

The suction unit design for the wing installations is shown in
Figure 7. The compressors were sized by the required suction
airflow, the compressor inlet total pressure, and the design exit
total pressure. Each wing unit consists of alow-pressure and a high-
pressure stage that are driven by the adjacent turboshaft engine.
The first stage compresses the lower pressure, wing upper surface
air to match the pressure level of the wing lower surface air. The
second stage then compresses the total airflow to match the free
stream total pressure, resulting in zero nct thrust. The empennage
suction compressors have an additional stage and a higher pressure
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\-'SUCTION .
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SUCTION
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Figure 6 Wing Suction Duct Characteristics
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Figure 7 Compressor/Suction Engine Design

ratio to handle the air from the vertical tail. The tail turboshaft
drive engines are, however, identical to the wing units.

The preceeding definition of the LFC systems and configura-
tion provided the baseline airplane for the wingjgeometry/cruise
speed optimization study. The technique used” consists of the
five sequential steps shown in Figure 8. The range of values of the
primary wing variables; i.e., thickness ratio (t/c), aspect ratio
(AR}, and quarter chord sweep A, is defined in step 1. Since four
values were specified for cach of the three variables, there are 64
possible combinations. In step II, the method of orthogenal Latin
squares was used to define a minimum number of wing designs
(16) that accurately represent the entire matrix. In step ITI, each
of the 16 selected designs was evaluated by the enginefairframe
matching technigue used to obtain Figure 3. The LFC airplane
design selection chart for AR=14 is shown in Figure 9. Similar
charts were constructed for the AR=8, 10, and 12 airplanes2 to
complete the required set of 16, Note that the selected design is
neatly the minimum fuel configuration and within 2% of the
minimum gross weight configuration, subject to the turbulent
climb to 35,000 ft altitude constraint. This process provided
values of the secondary variables; i.e., wing loading (W/S), thrust
to weight ratio (T/W), Mach number (M), and cruise altitude, that
satisfy the design constraints. Values for the principal design

figures of metit; ie., fuel burned, takeoff gross weight, and pro-
ductivity, were also calculated. A forward step regression analysis
method was used in step IV to construct approximating functions
to represent the relation between the primary independent and
each dependent variable, including the constraints and figures of
merit. Step V uses a powerful nonlinear optimizer on the con-
structed approximating functions to conduct constrained or
unconstrained optimization studies, sensitivity studies, and trade
studies.

Results of the wing planform/cruise speed optimization study
illustrate the impact of wing planform geometry on the cruise
Mach number (Figure 10), fuel burned (Figure 11), TOGW (Fig-
ure 12}, and productivity (Figure 13). The surface fit equations
from the regression analysis are a good representation of the initial
baseline LFC configuration and the additional 15 LFC configura-
tions. The wing geometry (primary variables) and cruise Mach
number for the resulting minimum fuel, minimum TOGW, and
maximum productivity airplanes are shown in Figure 14, Sensi-
tivities of the airplanes to changes in the wing planform are also
shown. Sensitivity is defined to be the total change in the primary
figure of merit; i.e., fuel burned over the entire range of the par-
ticular design variable.
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Figure 10 Effect of Wing Flanform Geometry on Cruise Mach

The optimum planform for the minimum fuel airplane has
the highest aspect ratio, lowest thickness/chord ratio, and a
quarter-chord sweep of about 12 deg. This results in a cruise Mach
number of U.78, The sensitivity data show that a high aspect ratio
is the most important for minimum fuel (largest sensitivity coef-
ficient in Figure 14), wing thickiiess is of secondary importance,
and sweep is rather unimportant.

The minimum gross weight airplane has the same maximum
aspect ratio as the minimum fuel airplane, and a slightly lower
sweep angle. This' minimum gross weight airplane favors a higher
thickness ratio of 11% and a cerresponding optimum cruise Mach
number of 0.75. The sensitivity data show that a low sweep angle
and high aspect ratio are most important for the minimum gross
weight airplane. Wing thickness ratic is an insignificant design
variable in this case.
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Figure 14 Laminar Flow Control Wing Optimization Study Results

The maximum productivity airplane also favors the maximum
aspect ratio. The optimum configuration for this case requires a
high sweep and low wing thickness because productivity varies
linearly with cruise speed. This results in a cruise Mach number of
0.85. The sensitivity data indicate that a low thickness ratio is
most important, followed by aspect ratio and swecep, respectively,
in importance.

A low-chord Reynolds number and a low-unit Reynolds
number are desirable to case the task of laminarization. The study
airplanes all cruised at Mach number and altitude combinations
such that the unit Reynolds number was 1.5 x 100, Thus, higher
aspect ratios are necessary to limit the maximum-chord Reynolds
numbers. The attachment line momentum thickness Reynolds
number, R@AL, is also an important parametes. If R@AL exceeds

about 100, disturbances may propagate spanwise along the LT,
destroying laminar flow aft along the wing. Exceeding this limit
would require special treatment, such as suction around the LE
with chordwise slots or locally reduced LE radii as tested during
the X-21 program. The effect of typical values of LE suction on
the allowable equivalent unsucked momentum thickness Reynolds
number is shown in Figure 15. Low wing sweep is required to
achieve low values of R@AL’ and will also reduce boundary-layer

crossflow instability problems.

Results of the wing planform/cruise speed optimization study
summarized in Figure 16 show that the desirable planforms for
optimum performarce also ease the task of laminarization. A wing
planform having a high aspect ratio, low thickness/chord ratio, and
low sweep minimizes both fuel and gross weight and maximizes
productivity. The same geometry results in low-chord Reynolds
number, crossflow and attachment line Reynolds numbers. The
wing planform selected for the LIFC configuration and shown in
Figure 17 has AR = 14, t/fc = 0.14/0.08 and Agjq = 10 deg.

Trade-off Studics

Design of the final LI'C airplanc required qualitative assump-
tions in several key areas. Changes in the airplunc and its cost,
brought about by changes in these assumptions, arc investigated
in this section.

The LEC airplane was sized with a total LFC weight penalty
of 2.25 Ib/ft2 based on the entire laminarized wetted area. This
penalty includes the suction pumps, suction engines, main collec-
tor ducts and manifolds, surface structural integration, and in-
stallation penalties to the surrounding structure. This is not a
validated weight level, but was considered reasonable for con-
ducting the various studies. In order to identify the sensitivity
of the LFC configuration to this assumption, total LIFC system
plus structural integration weight penalties of 0, 2.25, and 30
lb,n't't2 of treated wetted area were considered. The variation of
fuel savings, TOGW reductions, and operator’s empty weight
(OEW) changes relative to the reference turbulent airplane are
shown in Figure 18. For the basic LFC weight penalty of 2.25
lb,lfft2 of laminarized area, the impact of LFC is: 27% fuel savings,
7% reduction in TOGW, and 12.2% increase in QEW. The in-
creased OEW is primarily due to the higher optimum wing aspect
ratic (14) of the LFC airplane as compared to the reference
turbulent airglane {AR=12). The data also show that a reduction
of 1/2 Ibfit= in LFC weight penalty will produce additional
fuel savings of 1%, TOGW reduction of 2%, and OEW reduction
of 4%,

Effects of in-flight loss of LIFC, or of failure te cstablish
laminar flow, were investigated to determine the impact on the
mission performance of the airplane. With full loss of LFC, the
cruise lift/drag ratio is reduced from 40 to 28 due to the increase
in wing and tail profile drag. Figurc 19 shows the distance of flight
and time of flight that can be used to achieve full laminar flow and
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WING DESIGM PARAMETER
FIGURE QF MERIT ASPECT THICKNESS
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& NMC: Not a major consideration

Figure 16  Desirable Laminar Flow Contro! Wing Planform Characteristics

meet the design range. The normal reserves (5% mission fuel plus
30 min sea-level loiter) will allow the airplane to cruise 2,000 nmi
{or 5 hry with full loss of laminar flow to achieve the design
laminarization and meet the 10,000 nmi mission. This capability
is considered sufficient to fly out of a typical storm area. The
reserves also allow the airplane to accomplish the design mission
with a 25% loss of LI'C over the entire mission.

The basic LFC airplane had the wing and cmpennage lam-
inarized to 70% chord, primarily because of reduced design
complexity and lower technical risk, Results of a recent advanced
composites LFC wing design study ' indicate that full-chord lam-
inarization of a wing with trailing-edge controls is technically
feasible. The objective herc was to assess potential performance
benefits of increasing the chordwise extent of laminarization on

the wing and empennage without consideration of the detailed
design difficulties. The cruise lift/drag ratio increases from 40 to
46 as the extent of laminarization is increased from 70% to 95%
chord. The associated penalties include increased LFC systems
weight, doubled suction mass flow, and increascd suction engine
fuel requirements.

Figure 20 is a comparison of the gross weight of the LIC
configuration, sized with different chordwise extents of laminar
flow, and the gross weight of the reference turbulent airplane. The
LFC configuration without laminar flow has a higher gross weight
than the turbulent airplane because the optimum planform for the
LFC configuration is not optimum for the reference turbulent
airplanc. The gross weight decrecases as the laminarization is
extended aft, due to the rcduced fuel requirements. The effect
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Figure 18 Laminar Flow Control Fuel and Weight Savings

of the extent of laminarization on fuel saving, TOGW, and OEW
change shown in Figure 20 suggests the following order for achiev-
ing maximum LFC benefits:

Various investigations have explored a number of aero-
dynamic concepts that offer the possiblity of significant drag
reduction on fuselage-type bodies.” These techniques include
body laminar flow control, body boundary layer control, low-

1. Laminarize the wing back to the TE control surfaces energy air slot injection, and compliant skins. The effects of body
Laminar; ‘ - drag reductions up to 40% for weight increments of 0, 1.5, and

2. conti-lg?:ue the empennage back to minimum chord TE 3 lbfft2 of treated area on the final LFC airplane ate shown in
Figure 21. A 25% body drag reduction results in an additional 4%

3. Conduct design studies to identify feasibility of laminar- TOGW reduction and an 8% saving in fuel. This is about equivalent

izing over the TE control surfaces
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to the benefits achieved by laminarizing the empennage.
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Economic analyses were made to compare the 20-vear life-
cycle costs and surge condition operating costs of the LIFC and
turbulent configurations. Additional analyses were made to
identify the sensitivity of the relative costs to fuel price, LFC total
weight penalty, LFC technology complexity, and mainienance
cosis. The total fuel costs, at 40¢/ gal, of the turbulent airplane
arc a small portion of the total lifc-cycle costs shown in Figure 22
because of the low peacetime atilization rate of 1,080 flying hours
per airplane per year. Production costs are the major cost items.
Although LIFC reduced the fuel costs significantly, the estimated
production costs increased such that the relative life-cycle costs of

[ LIFE CYCLE COST ELEMENTS |
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Fiqure 22 Twenty-Year Life-Cycle Cost Elements
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Potential Benefits of Body Drag Reduction

the LFC airplane exceed those of the turbulent airplanc by 16.5%
for the 2.25 lb,fft2 LYV C weight penalty. Operating costs, shown in
Figure 23, were determined for a surge condition with a higher
utilization rate of 10 flying hours per day per airplane for a 60-day
period. For this case, fuel costs comprise a major portion of the
operating costs. Consequcntly, operating costs fo the LFC airplane
are 9% (2.25 lb,’ft weight penalty) less than those of the turbu-
lent airplane. Similarly, at 80¢/gal, the relative life-cycle costs and
opcrating costs of the LIFC airplane are, respectively, 13% more
and 14% less than for the turbulent airplane.

OPERATING COST ELEMENTS

RELATIVE
OPERATING ® FUEL PRICE = 40 C/gal.
COSTS
REFERENCE
TURBULENT
1 AIRPLANE
or \ LFC AIRPLANE
05 OTHER ITEMS
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o LTI, /Mzzl
oL SE.MODELS, SPARES

o} 1.0 2.0 30

W pe. ID/ft2 LAMINAR WETTED AREA

Figure 23 Sixty-Day Surge Condition Cost Efements



The aforementioned economic assessments of the LIC
airplane assumed a 3.5% increase in maintenance costs above a
conventional turbulent airplane. The effect of variations in main-
tenance costs on the economics of the LFC airplane is shown in
Figure 24. The impact of LFC technology complexity cost varia-
tions, relative to the current study estimates, is also shown. The
LFC complexity costs reflect the estimated impact of LFC on

20

LFC TECHNOLOGY
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50 100
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[ i i
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engineering hours, development hours, tooling hours, and produc-
tion hours. A 50% variation in technology complexity costs
changes the life-cycle cost by 5%, and has a negligible effect on the
surge condition operating costs. An increase in maintenance cost
factor from 3.5% to 10% increases the life-cycle costs by 1.5%
and the operating costs by 4%,

The relative life-cycle costs of the LFFC airplane are shown in
Figure 25 for no increase in technology complexity costs above
that of the turbulent airplane. This is a design objective for LI'C
airplanes. For this case, the life-cycle costs of the LFC airplane
would be less than those of the turbulent airplane when the LFC
system and structural weight penalty is less than 1.5 Ib/ft~.
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Control Fuel Savings



Fuel savings that would be achieved through the use of
laminar flow control are shown in Figure 26. The 20-year, peace-
time, low utilization rate would result in a fuel saving of over 2-
billion gallons of fuel. Additionally, for every 60-day surge con-
dition, the LFC airplane would save nearly 60-million gallons of
fuel. That amount is equivalent to the total fuel burned by 104,600
cars operating for 1 year.

Conclusions

Major conclusions based upon the assumptions made during
this study, which specifically apply to very long-rtange, high-
payload military transport airplanes of relatively low utilizaticn,
are given below.

® LFC can provide large reductions in fuel usage (27 to
30%).

e  LFC results in 7 to 10% lower gross weights, depending
on the estimated LFC weight penalty.

e Life-cycle costs will probably be higher for low design

utilization rates. Life-cycle costs depend on estimated
LFC weight penalty and technology complexity costs.

»  Sixty-day surge condition costs will be less with an LIFC
airplane (10 to 15%) depending on fuel price and LFC
maintenance costs.

o  Normal military reserves are adequate to meet mission
objectives with reasonable losses of LFC.

The LFC wing planform for optimum performance is
beneficial to the task of providing LIFC.
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e The extent of laminarization study has suggested an
order for achieving LFC benefits with.minimum tech-
nical risk.

The purpose of this study was to conduct a preliminary
design investigation of a large subsonic military transport to identi-
fy the impact of Taminar flow control on the performance and
ecconomics of the airplane. A valid assessment of an LFC ajrplane
must be preceded by an extensive design, development, and flight
test program. NASA, as part of the Aircraft Energy Efficient
(ACEE) program, is conducting extensive LFC studies that cur-
rently include a flight test program to determine the operational
and economic feasibility of LFC,
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